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Introduction

This report summarizes the work done in the period February 1993 through July 1993 on

the "Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites"

program. An oral presentation of this work was given to Langley personnel in September

of 1993. As per an oral agreement with Steve Tompkins, this presentation was accepted in

lieu of the usual semi-annual report. This document was prepared for archival purposes.

Progress

Studies have been performed on the effects of spatial variations in material strength.

Qualitative agreement was found with observed patterns of crack distribution. These

results were presented to NASA Langley personnel in November 1992.

The analytical methodology developed by Prof. McManus in the summer of 1992 (under an

ASEE fellowship) has been generalized. A method for predicting matrix cracking due to

decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate has been

implemented as a computer code. The code also predicts changes in properties due to the

cracking.

Experimental progressive cracking studies on a variety of laminates were carried out by

graduate student Cecelia Park at Langley Research Center. Results were correlated to

predictions using the new methods. Results were initially mixed. This motivated an

exploration of the configuration of cracks within laminates.

A crack configuration study was carried out by cutting and/or sanding specimens in order

to examine the distribution of cracks within the specimens. These investigations were

supplemented by dye-penetrant enhanced X-ray photographs. The behavior of thin plies

was found to be different from the behavior of thicker plies (or ply groups) on which

existing theories are based. Significant edge effects were also noted, which caused the

traditional metric of microcracking (count of cracks on a polished edge) to be very

inaccurate in some cases. With edge and configuration taken into account, rough

agreement with predictions was achieved.

All results to date were reviewed with NASA Langley personnel in September 1993. View

graphs from this presentation are attached. A paper on the previous work was also

completed during this period and is attached. 1





Current Status

Cecelia Park is preparing her Master's thesis, which will fully document all of the work

reported here. Work on a small thermal cycling and aging chamber is also in progress.

The modified computer code is being documented and prepared for distribution. Work is

commencing on the development of a modified theory to account for crack configuration,

strength variation, and edge effects. The paper l, recently presented at the American

Society for Composites 8th Technical Conference on Composite Materials, is being

prepared for submission to an archival journal.
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ABSTRACT

Thermal fatigue has been observed to cause matrix cracking in laminated composite
materials. A method is presented to predict transverse matrix cracks in a composite laminate
subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based
fracture criteria are used to predict crack density as a function of temperature. Prediction of

crack density as a function of thermal cycling is accomplished by assuming that fatigue
degrades the material's inherent resistance to cracking. The method is implemented as a
computer program. Simple experiments provide data on progressive cracking of a laminate
with decreasing temperature, and on cracking induced by thermal cycling. Correlations of the
analytical predictions to the data is very good. A parametric study using the analytical method
is presented which provides insight into material behavior under cyclical thermal loads.

BACKGROUND

The orbital environment is characterized by wide swings in temperature as the vehicle
moves in and out of the shadow of the earth. Composites subjected to this thermal cycling
suffer from transverse matrix cracks [1]. These cracks cause degradation of material
properties, dimensional changes, and changes in the coefficients of thermal expansion (CTE)
of the composites. In extreme cases, this can cause the material to simply come apart. More
relevant is the changes in properties that can be caused by even modest levels of cracking.
Composite laminates are often used in space structures due to their extreme dimensional
stability. Such laminates are, however, very sensitive to imperfections, and their CTE's can
be changed significantly by matrix cracking levels that are not otherwise a threat to the
structure. This problem is under continuing experimental study.

The problem of transverse matrix cracking in laminated composites due to mechanical
loading has been extensively studied. It has been observed that Classical Laminated Plate
Theory (CLPT) cannot predict transverse cracking; the strain at which transverse cracks

appear is dependent on the thickness of the cracking ply-group [2], a dependency which is not
predicted by CLPT. In practice, the transverse strength of a group of plies with the same
orientation is often treated as a function of the ply group thickness. To be used in design,
however, this approach requires data from many different layups for each material under
consideration. A predictive methodology based on a shear lag model of the stress distribution
around a transverse crack, combined with an energy-based criteria for crack growth, has been
studied by many authors. A good review, which will not be repeated here, is given by Naim
[3], and extensive work continues to appear in the literature [4,5]. The method of Laws and
Dvorak [6] is particularly well suited to investigations of progressive damage due to
monotonically increasing loads.

Hugh L. McManus. Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
David E. Bowles and Steplaen S. Tompkins, NASA Langley Research Center, Hampton, VA 23681



Transverse cracking has been recognized as the trtrst stage of damage due to cyclic loading
in many laminates [7-9]. The literature concerned with the characterization and prediction of

fatigue damage has extensive descriptions and measurements of this phenomena, but is less
concerned with predicting it than using it as a metric of damage. In particular, reference is

made to a "characteristic state" of damage at which the laminate is allegedly saturated with
cracks. The crack distribution at this state is taken to be a laminate property, independent of

loading type or history.
A limited literature exists on attempts to use shear lag and fracture mechanics concepts to

predict transverse cracking as a function of fatigue loading. Petltpas et al. [10] use a shear lag
stress solution and a maximum stress criteria for crack formation, coupled with measurements
showing that the effective transverse failure stress is a function of number of cycles, to predict
the crack density as a function of cyclical loading. Lafarie-Frenot and Henaff-Gardin [I 1]
propose an empirical relation between crack density and number of cycles in the form of a
Paris-type law.

Most of these studies include the important effects of residual curing stresses, which are
thermal stresses. None. however, explicitly address the issue of transverse crack formation
under thermal loading.

STATEMENT OF PROBLEM

Given appropriate material properties_ the layup and geometry of a composite laminate.
and a thermal loading history, we predict the resulting distribution of matrix cracks, and the
resulting degraded laminate properties. An analytical model is implemented as a computer
program to provide the predictions. It is verified by correlation with experiments, some
performed as part of this effort and some garnered from the literature.

ANALYTICAL MODEL

Thermal or mechanical loading stores strmn energy in the laminate. Some of this energy is
released by the formation of a transverse crack. Typically, these cracks appear suddenly

across the full height and width of a ply or ply-group (group of adjacent plies all with the same
alignment angle) parallel to the fibers, Figure 1. The amount of energy released can be
approximated by a shear lag solution of the stresses in the vicinity of the crack. The
appearance of a crack can then be predicted by a simple energy method- if the energy released
AG is greater than the energy necessary to form the crack G,,, the crack will form.

A simple shear lag model was derived. It was found to be identical in form to that of
Laws and Dvorak. Readers are therefore referred to Reference 6 for details. We will use the

notation of Laws and Dvorak with minor variations. We consider a laminate consisting of a
ply group with fibers aligned 90 ° to the x axis embedded in an arbitrary laminate. Figure 2
shows an edge-on view of such a laminate. A unit depth in the y direction is assumed. We
assume the cracks labeled A and B exist, and wish to find the strain energy released by the

appearance of the additional crack C. The thickness of the cracking ply group is az; a, is the
combined thickness of the remainder of the laminate, and ao is the laminate thickness.

Similarly, E2 is the uncracked axial stiffness of the cracking ply group, E, is the axial stiffness
of the remainder of the laminate, and Eo is the stiffness of the entire laminate. These effective
stiffnesses can be calculated from the ply properties and laminate geometries using the
relations contained in the Appendix. This is, with minor differences in notation, the problem
studied by Laws and Dvorak. They derived

where zaG is the change in strain energy due to the appearance of crack C. _ is a geometric

shear lag parameter, and o'is the axial stress in the cracking ply group prior to cracking.
Laws and Dvorak expressed this stress as a function of applied load and residual thermal
stresses. We wish to express it in terms of applied thermal load AT. In the absence of applied
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Figure 1. Cracked cross-ply laminate
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Figure 2. Cracking geometry

mechanical load, the stress due to a change in temperature can be shown to be

o'-

ETat+ E_.a_ . (2)

here AT = T - T,:and T¢ is_e strew-freetemperatureof thelaminate,oftenassumed to be

e c.uretemperature, m materialsof mterest,_x2> a_,so a negativeAT isrequiredfora

posmve stress.Combining F_.qs.Iand 2,and settingziG toGtc,the temperaturechange
necessarytoform a crack atlocationC isfound to be

a:

The negative value of the square root is selected on the physical grounds that this value of AT
produces positive stress m the cracking ply group.

Multiple cracks are handled by predicting a crack density p, which is the inverse of the

average crack spacing. Predictions based on a single parameter p assume an unrealistically
even crack spacing, but can be used to calculate either the maximum possible crack density, or
the minimum density. For example, if we assume a uniform crack spacing, and assume new
cracks will form half way between the existing cracks (h:--h2--h in Figure 2), Eq. 3 becomes

AT*= ,/2'Gtc(E'a1+E:'!/(2tanh_h_tanh_. ) • (4,

An existing crack spacing of exactly 2h will allow many more cracks to form at AT*,
resulting in crack spacing h; while an existing crack spacing of just under 2h will not allow

any more cracks. Therefore, the minimum possible crack spacing due to temperature change
AT* is h, while the maximum possible spacing is just under 2h.

The above formulation does not account for the observed effects of thermal cycling. To
account for these effects, we modify the approach of Petitpas et al. [10]. They report a
decrease in the first ply failure stress of cross-ply laminates due to mechanical loading cycles.
By modifying Eq. 1, with h = ht = h_ = .., and setting AG to Gtc, we can relate the stress in the

cracking ply group at the time of the first crack _ to the critical strain energy release rate.

= +,,,.)eo
2{a_gE= _' (5)

Given effective failure stress as a function of loading cycles N. and the original critical
stain energy release rate, we can reasonably estimate the effect of cyclical loading on the



critical strainenergy release rate by dividing Eq. S by the zero=cycle values and rearranging.

G,,( N) = G,#(O) [ crt#( N)/crt#(O )] 2 (6)

Given Gt# as a function of number of loading cycles, we can predict the limits of crack

density as a function of constant thermal cycles by solving F_q. 4 for h, with AT* the absolute

maximum zlTduring the cycle, and Gt# being GI# (3/). This procedure ignores stress ratio

effects.They could be includedwithoutchange intheprocedure by using ty/,.(N)data
coLlectedusingthecorrectstressratio.The procedurealsopresumes thatallmaterial
propertiesaretemperatureindependent.

The degraded propertiesofthecrackedlaminatesarenow calculatedasfunctionsof crack

density.Laws and Dvorak [6]givea generalderivationof thisproblem. We willstartwith

theirformula forreduced laminateaxialstiffness,E-_o.Using our notation,and notingp - I/h

(7)

Clearly,the reductioninlaminatestiffnessisdue toa reductioninthestiffnessof the

cracked ply group. IfE_ isthisreduced stiffness

= rE, (8)

where _'isa knock-down factordue tothecracks.Itcan be calculatedby combining Eqs. 7,
8 and A4

All of thepropertiesof thecrackedlaminatecan now be calculatedby CLPT [12].The

propertiesof thecracked pliesaremodified by multiplyingthe non-axialreduced stiffnesses

by the factorr: The detailsof thesecalculationsarefound intheAppendix.

COMPUTER PROGRAM

The models of laminate behavioroutlinedin the previoussection were implemented as a
computer code, CRACK-O-MATIC. The code takes material properties, laminate geometries.
and thermal loading histories, and predicts minimum or maximum crack densities, and the

corresponding degraded laminate properties. The code currently performs three types of
calculations=

I) prediction of the crack density due to monotonic application of a given AT
2) tabulation of crack densities and degraded material properties as a function of

monotonically decreasing temperature

3) tabulation of crack densities and degraded material properties as a function of
number of constant thermal cycles

The code is available in user=friendly form, including instructions, from the authors.

EXPERIMENTS

Two types of experiments were carried out as part of this effort. A group of specimens
were exposed to steadilydecreasingtemperatures,and severalgroups of specimens were
subjectedtoconstantthermalcycles.The decreasingtemperaturespecimens were made from

P75/934 material.The thermalcyclinglaminateswere made from prepregcontaining

continuousgraphitefibersof differenttypesand theERL 1962 epoxy resinfrom Amoco

Performance Products,Inc. Allof thecomposite laminateswere fabricatedattheNASA

Langley Research Center usingvendor recommended procedure. Specimens were cut from

12 inchsquarelaminatedpanelsofeach material.One sideofeach specimen was polishedso

damage could be observed. All specimens were driedtoa constantweight ina warm vacuum



oven and stored in a vacuum at room temperature to dlmi-_te moisture absorption effects.
The layups and materials used an: summarized in Table 1. All specin_ns measured 3.0 inches
by 0.5 inches. Three replicants wen: used in each t_st.

The fasttestmeasured crack densityas afunctionof decreasingtemperature.The
specimens wcm cooled to a target temperature at no more than 10°F/min, held at that

temperature for 15 minutes, and returned to room tcmtgratur¢ at no more that 10°F/min. A

smallchamber equipped with liquidnitrogencoolingand electricalresistance heatingwas

used. The specimens were shieldedfrom contactwith theheatingand coolingelements,and
wcrc heatedand cooled by circulatingaironiy. A.ftereach excursion,crack densitieswere

me,astav.datroom temperatureby countingcracksundca"opticalmagnificationsfrom 100x to

4o0x. The number of cracks in the middle one inch of each specimens was counted, and the

results avenged. Only cracks that were observed to go more that half way through the central
90 ° ply group were counted. Measurements were taken of the specimens as-received, and
afterexcursionsto0O,-50°,-I00O,-150°,-200O,and -250OF. The resultsam shown inthe next
section.

Thermal cycling test were then performed. The damage state of each specimen was

determined priortothcrrnalcyclingby examining thepolishededges with an optical
microscope ata magnificationof400x. Specimens were thermallycycled between +/-250OF in

a chamber similarto theenvironmentalchamber describedin Reference 13. For thesetests,

thethermalcyclehad a periodof about 25 minutes. Afterspecimens had been exposed to

pre,dctcrmmed number of cycles,thespecimen edges wcre examined forinduced damage and
thensubjcctedtoadditionalthermalcycles.Cumulative damage was trackedforeach
specimen. Again, theresultsarcinthe nextsection.

RESULTS AND CORRELATIONS

The resultsof themonotonic coolingexperimentsarc shown inFigure 3. The measured

crack densityisshown as a functionof temperature.The mangles roprcscntthemeans of
threespecimens,while the barsrepresentthelimitsof theindividualmeasurements. Itcan bc

seen thatthedataisvery consistent.The experiment was not a truemonotonic coolingtest,as
thespccimcns were returnedtoroom temperatureforcrack counting,but theeffectof these

few thermal cycleswere assumed tobe negligiblecompared tothedamage done by exposure
tosuccessivelylower tcrnpcratures.The factthatcrackswcrc observed in as-received

spe_mcns indicatesthatthe coolingfrom thecuretemperatureof 350OF (which was assumed

tobc thestressfreetemperature)toroom temperaturewas sufficienttoinitiatecracking.

The code was used togeneratepredictionsof laminatecracking.-Theply propertydata
used isinTable 2. The materialstiffnesspropertiesarc NASA Langley data. The strain

energy releaserateGI_and theshearlagparameter _ fortheP75/934 materialwas not known,

so thevalueswere adjustedtofitthedata. The correlationisshown in F'igure3. The match

bctwccn theanalysisand dataiscxccUent This is,of course,not surprisinggiven the

Table

Test Type

Thermal

CycLing
(+/- 250°F)

Monotomc
cooling

1. Tests Performed

Mamnal

TS0/ERLI962

TS0/ERLI962

P55/ERLI962

P55/ERLI962

P75/ERLI962

P'75/ERL1962

PI00/ERLI962

P100/ERLI962

P120/ERL1962
P120/ERL1962

P75/934

Layup
[01+-45/90]s

[O_)O/O_)OIs
[01+-45/90]s

[0/90/0/90]s

[0/+-45/90]s
[0/90/0/90]s

[0/+-45/90]s

[0/90/0/90]s

[01+,.45/90]s

[0/90/0/901s

[02/002]s

4O

._ 20"

lo-

0
-300

P75/934 [02/902]s Laminate

! I !

-200 -100 0 100

Temperature (°F)

Figure 3. Monotonic cooling data and analysis



Table2. Ply Properties

Material E, E, v G I", Gk

fl_si) ¢MsO (Ms0 flcsO IJ/m2)
P75/934 34.3 0.9 0.29 0.7 - 40

I300/934 6.OO 250
T50/ERLI962 28.8 1.04 0.27 0.63 4.36 132

P55/ERL 1962 25.0 1.OO 0.34 0.70 3.25 73
P75/ERL 1962 34.3 0.96 0.29 0.70 3.88 104
Ploo/ERL1962 51.7 0.87 0.30 0.70 2.67 50
PI20/ERL 1962 58.5 0.87 0.28 0.70 2.89 58

O[I

Won
-0.68

-0.30

.0.38

.0.53
..0.53
.0.68

16.0

18.0
16.0

22.0
21.0
16.0

0.65
0.90
0.90

0.65

0.65
0.65
0.65

adjustments of the constants, but the constants cannot change the overall trend predicted by the
analysis, so the fact a fit was achievable is at least encouraging.

More def'mite verification of the utility of the analysis can be seen in the fatigue study
correlation. In this study, two different layups and five different materials were studied. The

analysis used mamrial properties measured at NASA Langley and shown in Table 2. Gt¢

values were not available, so they were scaled from available transverse ply strength data, and
the available Gr¢ of 1"300/934 material. Assuming transverse strength Y, is a fracture
dominated property, it is reasonable to assume that for materials r and s,

o,o(,.)- Gt Cs)[r,C,.)lr,(s)]2 (

It was found that this method produced values within the range of measured G1¢ values
available for some materials. The value of the shear lag parameter was held constant for all
fibers of the same type, although it was found by comparison to available data on 1"300
materials that a value of 0.9 was appropriate for PAN based fibers, while the above correlation

suggests 0.65 for pitch based fibers. Given the geometric differences between the fiber types,
and the fact that the shear lag parameter is a geometric parameter, this is reasonable.

The dependencies of G_¢ on the number of loading cycles for all materials considered were
scaled using Eq. 6 and the data of Petitpas [I0]. The result for all materials considered was

Gr_(N) = OIc (0)[I - 0.033612 l°s,0 N (11)

The results are shown in Figure 4. Crack density is plotted vs. number of cycles, with the
mean of the data shown as symbols and the predictions as lines. The correlations axe
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"_ 60
e=
"D

•-_ 40(
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startlingly good. No modifications of the any of the analytical inputs were made to achieve

these correlations. It can be seen that the effects of variations in material types and layups are
successfully predicted, both qualitatively and, with the sole exception of the P55 material,
quantitatively as well. Most notable is the difference between the two different layups of T50
material- this subtle difference causes one laminate to crack after a few cycles, while the other
remains uncracked, and the effect is successfully predicted by the code.

PARAMETRIC STUDIES

Once a reasonable level of confidence in the analysis was achieved, an attempt was made
to obtain greater physical understanding of the cracking problem through parametric exercises
with the code. Simulations of monotonic cooling and thermal cycling were performed,

varying material critical energy release rate, cracking layer thickness, and surrounding
laminate layup. The effect of crack densities on the laminate properties were also examined as
a function of cracking layer thickness.

Figure 5 shows predicted cracking due to cooling for a family of layups with different
assumed Gr,- A [0.490,.], layup and P75/934 elastic properties used for the calculations.
Increasing G_cdecreases both the temperature at which cracking initiates and the level of

cracking at any given temperature. Note that in no case does the level of cracking reach a
steady state- at least in theory there is not "characteristic damage state" for this laminate
suffering damage due to monotonic cooling.

Figure 6 shows the effect of decreasing cracking layer thickness. The baseline [0:/9_],
laminate.__ with four 90 ° plies in the cracking group, is compared to a [0:/901, (with 2) and a

[0:/90 k, where the bar indicates that the laminate is symmetric about a single 90 ° ply. Thinner
ply groups delay the onset of cracking, but once cracking starts it continues to higher densities

in the thinner ply groups. Figure 7 shows the same study applied to a thermal cycling case.
Due to the severe +/-250°F thermal cycles, the thicker ply groups are severely cracked on the
f'trst cycle. The laminate with a single (5 mil) center ply shows somewhat different behavior;

if the single ply is reduced only slightly in thickness, to 4 mils, the laminate does not initially
crack, but does crack after thermal cycling. This is in qualitative agreement with observed
behavior [ 14].

Figure 8 shows the effect of different surrounding laminates on the cracking of a two-ply
central 90 ° ply group in thermal cycling. The effect is noticeable, and the trends non-intuitive.

The number of zero degree plies in the [0d90], family of laminates (where n from 1 to 3 was
checked) makes little difference. The more compliant [0/+--45/90], laminate has worse

cracking, but the presence of other 90 ° ply groups in the [0/90/0/90]s laminate seems to help.
Again, these results are partially confirmed by experiment- note the T50 results in Figure 4.

The effects of cracking on laminate stiffness and CTE are seen in Figures 9 and 10.
Figure 9 shows normalized stiffness loss. The stiffness loss is always fairly small, and is
negligible in the case of thin cracking ply groups. Figure 10 shows the laminate CTE;
normalization would be confusing in this case as the uncracked CTE's of each laminate are
noticeably different. Cracking causes the CTE to change more than 100% of the nominal

value, and even change signs, in some cases. Obviously this is an important effect, especially
in structures requiting extreme dimensional stability. The change in CTE due to cracking is
larger than the expected variation due to manufacturing and material variations [15], and hence
may cause the structure to drift outside of design limits for thermal deformations. This effect
is much less severe for thin cracking layers.

CONCLUSIONS AND RECOMMENDATIONS

The method of shear lag analysis combined with an energy method for crack prediction cart be
used to predict thermal cycling induced matrix cracking in composite laminates. The method
has been verified by comparisons with several different kinds of experimental results. A
parametric study using the analytical method gives good insight into the physical problem.
One important result is that laminates with thinner ply groups crack at lower temperatures
and/or larger number of thermal cycles, but when they do crack they will eventually reach
higher crack densities. On the other hand, the effect on laminate properties when thin ply
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groups crack is much smaller that the effect caused by cracking of thick ply groups. It was
also found that the material's transverse swain energy release rate is important to the onset and
eventual density of cracking, and that higher values are desirable. Less intuitive was the

finding that the layup has an important effect on the level of cracking, but that no one factor
dominates this effect.

These results are significant in light of recent efforts to reduce matrix cracking in

composite space structures through the use of thinner prepreg plies [14]. The hope has been
to eliminated cracking entirely. Our results indicate that even if no cracks are evident after a

few thermal cycles, cracks may form after further thermal cycling, and ultimately may reach a
higher density that would be reached with thick plies (see Figures 6 and 7). However, these

cracks have little effect on the laminate properties, as seen in Figures 9 and 10. Thin plies
may be useful for enhancing the stability of space structures, but for different reasons than
those originaLly proposed. In is also evident that. when comparing laminates with different
ply group thicknesses, crack density is alone is not a useful damage metric.

Further work is needed to make this method useful for quantitative, predictive analyses.
Accurate critical strain energy release rate data, preferably over a wide range of temperatures
and collected using a variety of specimen types and materials, is required. The method also

needs to be generalized so that cracking in more than one layer, and in layers with ply angles
of other than 90 °, can be predicted. Effects such as temperature dependence of material
properties, stress ratio effects, and random load cycles also need to be included.
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APPENDIX

We assume that the cracked laminate is much wider than it is thick. Therefore. the 2-

dimensional problem presented in Figure 2 is a plane strain problem. The appropriate
equivalent stiffnesses Eo, El, and E2 are calculated by CLPT [12]. For each ply i, we have

measured ply properties El,, (fiber direction stiffness), E, (transverse stiffness), v, (major
Poisson's ratio), G, (shear stiffness), o_, (fiber direction CTE), and o_ (transverse CTE). The

ply has thickness t, and the fibers are aligned at an angle 0, to the x axis. The cracking ply
group is treated as a single ply k. where 0t = 90 °. The equivalent stiffnesses are then
calculated as follows. For each ply i

Q, = T',.'Q,TJ

cos: 0_

Ti= / sin20_
L- sin o i cos o_

For the laminate

sin _0, 2sin0_cos0, l
cos2 0_ -2sin 0_cos 0,

sin0_cos0 i cos2 0i -sin 20i

(A2)

t=l
(A3)

With damage in layer k

Q_, =Q,,_,, Q_': = rQ22_kI

g,_ao- _a_= ao =a t +a_
at

Q_2 = _QI2(t) = _"_,_(_)

and we recalculate Eqs. AI-A3 using these values in Eq. AI when assembling Qk. The
effective stiffness E, fand effective CTE ce_of a laminate are def'med as

1 A' A -tE _ =_ =

A:_ao

• mm

a¢" = a:t ot' = A _ Qiot& or, = Trot,
i=i

(A4)

(A.5)

(A6)

(A7)
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BACKGROUND

Crack Formation In
Thermally-Loaded Composites

90 °

Unconstrained Plies

%

Cracks

Constrained Laminate

Cracks develop due to
thermal (CTE) mismatch
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EXPERIMENTA. PROCEDURE

Progressive" hermal Loading

Material: P75/934 Graphil:e, Epoxy
Size: 0.5 X 2.5 inches
Layups: [0_/9 )2Is

[0/+45/90/-45]s
[02/+30] s

Quantity: 3 each
9 total

Specimens cooled to progressively lower temps.
(70 ° to -200°F) in thermal environmental chamber

Crack density (cracks/inch). and d!stribution taken
on polished edge (Sid _,_,)using optical microscope.

o.,,

=

,Crack,&

t

-300 "------

Time (not to scale)



EXPERIMENTAL RESULTS

PROGRESSIVE LOADING

[02/_+30]s

20
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em
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0

16

12

8

4

-30

+30

- -<> - +30

0 .'. , _ , r_ ' o '
-250 -200 -150 -100 -50 0 50 100

Temperature (°F)

• Specimens hardly cracked, some cracking
in +30 plies

• Preliminary analysis predicts zero cracks



EXPERIMENTAL RESULTS

PROGRESSIVE LOADING

[0/+45/90/45]s

A

tO
e-

°_

L_

(D
¢l

t--
¢D

a

¢J

t-

O

5O

40

30

20

10

t,

• 90°

-450

--B--+ 45

--e--g0

- -O-- -45

lit ....... -e.

"''_ ..... ± _"I Iw

-50 0 50 100

0
-250 -200 -150 -100

i'°_-°

Temperature (°F)

• Trends for the middle-45 plies match the
preliminary analysis

• Preliminary predictions for 90 ° lies start to
crack too late but end up with saPe dens=ty

• +45 ° plies start at correct temperature but
crack density is low

• 90 ° and +45°data does not seem to agree
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XRAY PHOTOGRAPHY

RESULTS:

[02/902]s: Cracks propagate through entire width
specimen. About one crack/inch does not go through.

of

[0/+45/90/-45]s: Thick middle -45 layer showed good
behavior like the crossplies but pictures not as clear.
Evidence of some cracks in other plies after cooling

[02/+30]s: Inconclusive

CONCLUSIONS:

• Cracks in [02/902] s specimens behave 'ideally'

• Except for middle -45 layer, cracks either too thin/small
to see on photographs or do not propagate through the
width

• [0/+45/90/-45]s and [02/+30]s specimens need further
examination
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SANDING EXPERIMENT RESULTS

[0/+45/90/-45]s

100
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